济南IT培训 > 达内新闻
大数据时代下的CDN智能运维
- 发布:互联网
- 来源:互联网
- 时间:2017-11-23 19:03
近年来,短视频与直播业务的爆发,也让CDN行业迎来了新的发展机遇和挑战.这些挑战主要体现在运维上,可分为两方面:一是出现故障时的响应速度,这需要CDN服务商能够以最快的速度发现和处理故障.二是质量的提升,视频类客户的卡顿率往往是评判各家CDN厂商服务质量的首要标准,这要求服务方必须具备过硬的调优能力,因此,快速分析感知细微的质量变化、定位质量变化的原因就至关重要.
目前,金山视频云CDN的服务端天级日志量已近千亿条,数据量近百T级别,这些数据是解决运维效率、提升服务质量的关键.近日,在GOPS 2017全球运维大会上海站上,金山云大数据技术总监徐寅斐就如何利用数据进行CDN的智能运维这个话题,分享了金山云的做法和思考.
金山云大数据技术总监徐寅斐发表演讲
利用数据构建运维和服务质量支撑体系
一起和达内培训来看看吧,工欲善其事,必先利其器.数据是解决运维效率、运维自动化甚至智能化的核心,而要想充分利用已有的数据资产,数据平台的支撑就显得至关重要.为了满足目前和未来的需求,首先需要对现有的数据和使用方式进行分类:
现有数据可以分为四类.包括基础监控数据、探测数据、服务端日志、客户端日志,这四类数据在接入难度、数据量级上各不相同,数据平台需要统筹考虑所有数据的接入、传输、计算和存储.
CDN数据分类及特点
运维对数据的使用,可以分为四个阶段:数据支撑、分析支撑、决策支撑和预测支撑,每个阶段对数据平台有着不同的需求:数据支撑要求平台能够满足对上述四类数据的计算和存储需求,确保运维人员能够及时获取准确的数据指标.分析支撑要求平台能够及时响应各类即席查询的需求,包括对原始日志的全链路分析,对于业务指标的多维分析等.决策支撑和预测支撑则要求平台具备数据的强大后处理能力,包括对已存储数据的建模、挖掘能力.
数据运维四个阶段
金山视频云大数据平台架构建设实践
先说大数据平台.基于以上数据需求,金山视频云大数据平台在实践中,通过不断演进,最终形成了目前以Hadoop和Spark生态产品为基础的架构.平台的数据传输采用的是Kafka,作为现今最主流的传输中间件,它出色的吞吐能力为第一层数据缓冲提供了保障.数据计算全部采用Spark,技术栈的精简能够保证开发效率和平台稳定性,而且Spark可提供足够丰富的数据挖掘和机器学习库保证数据的后处理.
在数据的前处理上,金山云采用的是实时流+离线流修补的经典架构,实时流在一定精度的前提下,保证了数据的及时性,离线流保证了数据的最终完整性.此外,平台还引入了边缘计算,作用是在充分利用CDN节点分布式天然优势的同时,可大大降低中心数据平台的压力,提升了平台的整体稳定性.
金山视频云大数据平台架构
对于一个数据平台来说,最复杂的是数据存储,不同的数据查询和获取需求决定了最终的存储选型:对于查询灵活性要求极大,数据量适中的数据,金山云使用ElasticSearch + Kibana提供灵活的数据存储与查询服务.对于查询模式相对固定、数据写入量巨大的数据,Druid是一个不错的选择.
CDN的全量原始日志,则会经过ETL后以列存储的方式存储在HDFS上,可以通过SQL、代码片段等多种方式对数据进行查询分析.此外,整个数据平台使用金山云自研的大数据产品KMR,它对金山云其他IaaS服务的天然支持提供了很多便利,如分布式对象存储KS3,可以作为平台存储空间的扩充,重要的数据以及长期不用的冷数据,都会定期自动备份到KS3中持久存储.
金山视频云大数据平台采用多种技术
大数据平台的运维实践
基于这个大数据平台,金山云开发了多套系统提升运维效率.第一个是报警系统,大数据平台承载了CDN所有业务报警数据的清洗、计算和决策生成,Spark对流式计算的支持保证了数据产生到报警整个过程能够在1分钟内完成,保证及时发现问题,系统本身良好的水平扩展能力,也能够满足视频云运维不断变化的业务需求.
CDN业务报警的特点是种类多、维度多、报警阈值因地区运营商而异.报警规则和报警阈值的管理工作很复杂,为此,金山云的报警平台中有一套专门用于阈值评估的离线分析系统,针对所有指标的历史数据、人为配置以及运维对报警的反馈信息,综合评估出不同区域运营商的合理阈值,极大地降低了报警管理的难度.
第二个系统是CDN服务质量的"观象台"--鹰眼平台,它提供了50+业务指标、5+维度的服务质量数据的查询能力,可满足日常运维和调优工作中80%以上的数据获取需求,并可场景化呈现故障处理、网络链路质量、大客户服务质量维护等多种常见运维工作.
鹰眼的数据需求繁杂,既提供全局服务质量信息,也需要满足不同域名、区域运营商、链路以及缓存状态的细粒度查询,甚至需要对这些维度进行任意组合.为了满足这样的查询需求,鹰眼的服务质量数据使用ElasticSearch作为底层存储,在中等规模数据的写入和聚合查询方面的速度都很理想,文档化的存储方式也能满足数据快速迭代更新的需求.同时,鹰眼数据的部分聚合被下放到节点上进行,这样可以降低平台的计算负载.
更多达内培训相关咨询,请扫描下方二维码

最新开班时间
- 北京
- 上海
- 广州
- 深圳
- 南京
- 成都
- 武汉
- 西安
- 青岛
- 天津
- 杭州
- 重庆
- 哈尔滨
- 济南
- 沈阳
- 合肥
- 郑州
- 长春
- 苏州
- 长沙
- 昆明
- 太原
- 无锡
- 石家庄
- 南宁
- 佛山
- 珠海
- 宁波
- 保定
- 呼和浩特
- 洛阳
- 烟台
- 运城
- 潍坊
大数据时代下的CDN智能运维
- 发布:互联网
- 来源:互联网
- 时间:2017-11-23 19:03
近年来,短视频与直播业务的爆发,也让CDN行业迎来了新的发展机遇和挑战.这些挑战主要体现在运维上,可分为两方面:一是出现故障时的响应速度,这需要CDN服务商能够以最快的速度发现和处理故障.二是质量的提升,视频类客户的卡顿率往往是评判各家CDN厂商服务质量的首要标准,这要求服务方必须具备过硬的调优能力,因此,快速分析感知细微的质量变化、定位质量变化的原因就至关重要.
目前,金山视频云CDN的服务端天级日志量已近千亿条,数据量近百T级别,这些数据是解决运维效率、提升服务质量的关键.近日,在GOPS 2017全球运维大会上海站上,金山云大数据技术总监徐寅斐就如何利用数据进行CDN的智能运维这个话题,分享了金山云的做法和思考.
金山云大数据技术总监徐寅斐发表演讲
利用数据构建运维和服务质量支撑体系
一起和达内培训来看看吧,工欲善其事,必先利其器.数据是解决运维效率、运维自动化甚至智能化的核心,而要想充分利用已有的数据资产,数据平台的支撑就显得至关重要.为了满足目前和未来的需求,首先需要对现有的数据和使用方式进行分类:
现有数据可以分为四类.包括基础监控数据、探测数据、服务端日志、客户端日志,这四类数据在接入难度、数据量级上各不相同,数据平台需要统筹考虑所有数据的接入、传输、计算和存储.
CDN数据分类及特点
运维对数据的使用,可以分为四个阶段:数据支撑、分析支撑、决策支撑和预测支撑,每个阶段对数据平台有着不同的需求:数据支撑要求平台能够满足对上述四类数据的计算和存储需求,确保运维人员能够及时获取准确的数据指标.分析支撑要求平台能够及时响应各类即席查询的需求,包括对原始日志的全链路分析,对于业务指标的多维分析等.决策支撑和预测支撑则要求平台具备数据的强大后处理能力,包括对已存储数据的建模、挖掘能力.
数据运维四个阶段
金山视频云大数据平台架构建设实践
先说大数据平台.基于以上数据需求,金山视频云大数据平台在实践中,通过不断演进,最终形成了目前以Hadoop和Spark生态产品为基础的架构.平台的数据传输采用的是Kafka,作为现今最主流的传输中间件,它出色的吞吐能力为第一层数据缓冲提供了保障.数据计算全部采用Spark,技术栈的精简能够保证开发效率和平台稳定性,而且Spark可提供足够丰富的数据挖掘和机器学习库保证数据的后处理.
在数据的前处理上,金山云采用的是实时流+离线流修补的经典架构,实时流在一定精度的前提下,保证了数据的及时性,离线流保证了数据的最终完整性.此外,平台还引入了边缘计算,作用是在充分利用CDN节点分布式天然优势的同时,可大大降低中心数据平台的压力,提升了平台的整体稳定性.
金山视频云大数据平台架构
对于一个数据平台来说,最复杂的是数据存储,不同的数据查询和获取需求决定了最终的存储选型:对于查询灵活性要求极大,数据量适中的数据,金山云使用ElasticSearch + Kibana提供灵活的数据存储与查询服务.对于查询模式相对固定、数据写入量巨大的数据,Druid是一个不错的选择.
CDN的全量原始日志,则会经过ETL后以列存储的方式存储在HDFS上,可以通过SQL、代码片段等多种方式对数据进行查询分析.此外,整个数据平台使用金山云自研的大数据产品KMR,它对金山云其他IaaS服务的天然支持提供了很多便利,如分布式对象存储KS3,可以作为平台存储空间的扩充,重要的数据以及长期不用的冷数据,都会定期自动备份到KS3中持久存储.
金山视频云大数据平台采用多种技术
大数据平台的运维实践
基于这个大数据平台,金山云开发了多套系统提升运维效率.第一个是报警系统,大数据平台承载了CDN所有业务报警数据的清洗、计算和决策生成,Spark对流式计算的支持保证了数据产生到报警整个过程能够在1分钟内完成,保证及时发现问题,系统本身良好的水平扩展能力,也能够满足视频云运维不断变化的业务需求.
CDN业务报警的特点是种类多、维度多、报警阈值因地区运营商而异.报警规则和报警阈值的管理工作很复杂,为此,金山云的报警平台中有一套专门用于阈值评估的离线分析系统,针对所有指标的历史数据、人为配置以及运维对报警的反馈信息,综合评估出不同区域运营商的合理阈值,极大地降低了报警管理的难度.
第二个系统是CDN服务质量的"观象台"--鹰眼平台,它提供了50+业务指标、5+维度的服务质量数据的查询能力,可满足日常运维和调优工作中80%以上的数据获取需求,并可场景化呈现故障处理、网络链路质量、大客户服务质量维护等多种常见运维工作.
鹰眼的数据需求繁杂,既提供全局服务质量信息,也需要满足不同域名、区域运营商、链路以及缓存状态的细粒度查询,甚至需要对这些维度进行任意组合.为了满足这样的查询需求,鹰眼的服务质量数据使用ElasticSearch作为底层存储,在中等规模数据的写入和聚合查询方面的速度都很理想,文档化的存储方式也能满足数据快速迭代更新的需求.同时,鹰眼数据的部分聚合被下放到节点上进行,这样可以降低平台的计算负载.
更多达内培训相关咨询,请扫描下方二维码

最新开班时间
- 北京
- 上海
- 广州
- 深圳
- 南京
- 成都
- 武汉
- 西安
- 青岛
- 天津
- 杭州
- 重庆
- 厦门
- 哈尔滨
- 济南
- 福州
- 沈阳
- 合肥
- 郑州
- 长春
- 苏州
- 大连
- 长沙
- 昆明
- 温州
- 太原
- 南昌
- 无锡
- 石家庄
- 南宁
- 中山
- 兰州
- 佛山
- 珠海
- 宁波
- 贵阳
- 保定
- 呼和浩特
- 东莞
- 洛阳
- 潍坊
- 烟台
- 运城