对于CP来说,放弃可用性,追求一致性和分区容错性,我们的zookeeper其实就是追求的强一致。
对于AP来说,放弃一致性(这里说的一致性是强一致性),追求分区容错性和可用性,这是很多分布式系统设计时的选择,后面的BASE也是根据AP来扩展。-济南python培训负责整理
顺便一提,CAP理论中是忽略网络延迟,也就是当事务提交时,从节点A复制到节点B,但是在现实中这个是明显不可能的,所以总会有一定的时间是不一致。同时CAP中选择两个,比如你选择了CP,并不是叫你放弃A.因为P出现的概率实在是太小了,大部分的时间你仍然需要保证CA.就算分区出现了你也要为后来的A做准备,比如通过一些日志的手段,是其他机器回复至可用。
BASE
BASE 是 Basically Available(基本可用)、Soft state(软状态)和 Eventually consistent (最终一致性)三个短语的缩写。是对CAP中AP的一个扩展
基本可用:分布式系统在出现故障时,允许损失部分可用功能,保证核心功能可用。
软状态:允许系统中存在中间状态,这个状态不影响系统可用性,这里指的是CAP中的不一致。
最终一致:最终一致是指经过一段时间后,所有节点数据都将会达到一致。
BASE解决了CAP中理论没有网络延迟,在BASE中用软状态和最终一致,保证了延迟后的一致性。BASE和 ACID 是相反的,它完全不同于ACID的强一致性模型,而是通过牺牲强一致性来获得可用性,并允许数据在一段时间内是不一致的,但最终达到一致状态。
以上就是济南python培训给大家做的内容详解,更多关于python的学习,请继续关注济南python培训